S
A subseasonal-to-seasonal (S2S) prediction system was recently developed using the GFDL Seamless System for Prediction and Earth System Research (SPEAR) global coupled model. Based on 20-yr hindcast results (2000–19), the boreal wintertime (November–April) Madden–Julian oscillation (MJO) prediction skill is revealed to reach 30 days measured…
A satellite-based climatology is presented of 9607 mesoscale convective systems (MCSs) that occurred over the central and southeastern United States from 1996-2017. This climatology is constructed with a fully automated algorithm based on their cold cloud shields, as observed from infrared images taken by GOES-East satellites. The geographical,…
Most climate models neglect cloud longwave (LW) scattering because scattering is considered negligible compared to strong LW absorption by clouds and greenhouse gases. While this rationale is valid for simulating extrapolar regions, it is questionable for the polar regions, where the atmosphere is dry and hence has weak absorption, and ice…
Midlatitude baroclinic waves drive extratropical weather and climate variations, but their predictability beyond 2 weeks has been deemed low. Here we analyze a large ensemble of climate simulations forced by observed sea surface temperatures (SSTs) and demonstrate that seasonal variations of baroclinic wave activity (BWA) are potentially…
Compared to the Arctic, seasonal predictions of Antarctic sea ice have received relatively little attention. In this work, we utilize three coupled dynamical prediction systems developed at the Geophysical Fluid Dynamics Laboratory to assess the seasonal prediction skill and predictability of Antarctic sea ice. These systems, based on the FLOR,…
Most dust forecast models focus on short, subseasonal lead times, that is, 3 to 6 days, and the skill of seasonal prediction is not clear. In this study we examine the potential of seasonal dust prediction in the United States using an observation‐constrained regression model and key variables predicted by a seasonal prediction model developed…
The Kuroshio Extension (KE), an eastward-flowing jet located in the Pacific western boundary current system, exhibits prominent seasonal-to-decadal variability, which is crucial for understanding climate variations in northern midlatitudes. We explore the representation and prediction skill for the KE in the GFDL SPEAR (Seamless System for…
The response of ozone (O3) dry deposition to ecosystem‐atmosphere interactions is poorly understood but is central to determining the potential for extreme pollution events under current and future climate conditions. Using observations and an interactive dry deposition scheme within two dynamic vegetation land models (Geophysical Fluid…
We present a linear equation for the Walker circulation streamfunction and find its analytic solutions given specified convective heating. In a linear Boussinesq fluid with Rayleigh damping and Newtonian cooling, the streamfunction obeys a Poisson’s equation, forced by gradients in the meridionally averaged diabatic heating and Coriolis force…
Multidecadal variability of Atlantic Meridional Overturning Circulation (AMOC) has been reconstructed by various proxies, simulated in climate models, and linked to multidecadal Arctic salinity variability. Here we construct a simple conceptual model to understand the two-way interactions of the Arctic with multidecadal AMOC variability through…
Atmospheric radiative cooling is a fundamental aspect of Earth’s greenhouse effect, and is intrinsically connected to atmospheric motions. At the same time, basic aspects of longwave radiative cooling, such as its characteristic value of 2 K day−1, its sharp decline (or “kink”) in the upper troposphere, and the large values of CO2 cooling in…
Coastal ecosystems are increasingly threatened by anthropogenic stressors such as harmful algal blooms and hypoxia through the combined effects of eutrophication and warming. As a major terrestrial nitrogen source to the ocean, rivers play a key role in shaping coastal nitrogen budgets and biogeochemical cycling. Combining an enhanced…
Exchanges between coastal and oceanic waters shape both coastal ecosystem processes and signatures that they impart on global biogeochemical cycles. The timescales of these exchanges, however, are poorly represented in current‐generation, coarse‐grid climate models. Here we provide a novel global perspective on coastal residence time (CRT) and…
Bubbles bursting at the ocean surface are an important source of sea-spray aerosol. Indeed, a bubble bursting at the surface of a liquid produces a jet that then breaks up leading to several droplets. Here we simulate the bursting of a single bubble by numerical simulation of the axisymmetric two-phases air-water Navier-Stokes equations in the…
We investigate the monthly prediction of North Atlantic hurricane and especially major hurricane activity based on the Geophysical Fluid Dynamics Laboratory High‐Resolution Atmospheric Model (HiRAM). We compare the performance of two grid configurations: a globally uniform 25‐km grid and the other with an 8‐km interactive nest over the…
This study shows that the frequency of North American summertime (June-August) heat extremes is skillfully predicted several months in advance in the newly-developed GFDL (Geophysical Fluid Dynamics Laboratory) SPEAR (Seamless system for Prediction and EArth system Research) seasonal forecast system. Using a statistical optimization method, the…
Soil moisture plays a key role in controlling land-atmosphere interactions, with implications for water resources, agriculture, climate, and ecosystem dynamics. Although soil moisture varies strongly across the landscape, current monitoring capabilities are limited to coarse-scale satellite retrievals and a few regional in-situ networks. Here,…
We document the development and simulation characteristics of the next generation modeling system for seasonal to decadal prediction and projection at the Geophysical Fluid Dynamics Laboratory (GFDL). SPEAR (Seamless System for Prediction and EArth System Research) is built from component models recently developed at GFDL ‐ the AM4 atmosphere…
Bubbles bursting at the ocean surface are an important source of sea-spray aerosol. We describe jet drop production, from ensembles of high fidelity numerical simulations of bubble bursting, validated against experimental results. The number of jet drops, their size, and velocity are controlled by the ratio of the bubble size, Rb, and the visco…
Understanding the behavior of western boundary current systems is crucial for predictions of biogeochemical cycles, fisheries, and basin-scale climate modes over the midlatitude oceans. Studies indicate that anthropogenic climate change induces structural changes in the Kuroshio Extension (KE) system, including a northward migration of its…
The Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and Atmospheric Administration participates along with a number of model centers around the world in constructing state‐of‐the‐art climate models for use in studies for climate change and prediction. GFDL's latest multipurpose atmosphere‐ocean coupled climate model, CM4.0…
We study bubble break-up in homogeneous and isotropic turbulence by direct numerical
simulations of the two-phase incompressible Navier–Stokes equations. We create the
turbulence by forcing in physical space and introduce the bubble once a statistically
stationary state is reached. We perform a large ensemble of simulations to…
The current GFDL seasonal prediction system, the Seamless System for Prediction and EArth System Research (SPEAR), has shown skillful prediction of Arctic sea ice extent with atmosphere and ocean constrained by observations. In this study we present improvements in sub-seasonal and seasonal predictions of Arctic sea ice by directly assimilating…
Using observations and model simulations (ESM4.1) during 1988–2018, we show large year‐to‐year variability in western U.S. PM2.5 pollution caused by regional and distant fires. Widespread wildfires, combined with stagnation, caused summer PM2.5 pollution in 2017 and 2018 to exceed 2 standard deviations over long‐term averages. ESM4.1 with a…
Tropical cyclones (TC) are one of the most severe storm systems on Earth and cause significant loss of life and property upon landfall in coastal areas. A better understanding of their variability mechanisms will help improve the TC seasonal prediction skill and mitigate the destructive impacts of the storms. Early studies focused primarily on…
Numerical and observational evidence indicates that, in regions where mixed-layer instability is active, the surface geostrophic velocity is largely induced by surface buoyancy anomalies. Yet, in these regions, the observed surface kinetic energy spectrum is steeper than predicted by uniformly stratified surface quasigeostrophic theory. By…
Preliminary evidence suggests that climate may modulate the transmission of SARS-CoV-2. Yet it remains unclear whether seasonal and geographic variations in climate can substantially alter the pandemic trajectory, given high susceptibility is a core driver. Here, we use a climate-dependent epidemic model to simulate the SARS-CoV-2…
CO2-forced surface warming in general circulation models (GCMs) is initially polar-amplified in the Arctic but not Antarctic—a largely hemispherically antisymmetric signal. Nevertheless, we show in CESM1 and eleven LongRunMIP GCMs that the hemispherically symmetric component of global-mean-normalized, zonal-mean warming (T∗sym) under 4×CO2…