Publications

20 Publications
Applied Filters: First Letter Of Title: I Reset

I

Journal Article

Flow organization into systems of fast-moving ice streams is a well-known feature of ice sheets. Fast motion is frequently the result of sliding at the base of the ice sheet. Here, we consider how this basal sliding is first initiated as the result of changes in bed temperature. We show that an abrupt sliding onset at the melting point, with no…

Journal Article

The onset of sliding in ice sheets may not take the form of a sharp boundary between regions at the melting point, in which sliding is permitted, and regions below that temperature, in which there is no slip. Such a hard switch leads to the paradox of the bed naturally wanting to refreeze as soon as sliding has commenced. A potential…

Journal Article

Earlier studies have proposed many semi-empirical relations between climate and tropical cyclone (TC) activity. To explore these relations, this study conducts idealized aqua-planet experiments using both symmetric and asymmetric sea surface temperature (SST) forcings. With zonally symmetric SST forcings that have a maximum at 10°N, reducing…

Journal Article

The future trajectory of the Covid-19 pandemic hinges on the dynamics of adaptive immunity against SARS-CoV2; however, salient features of the immune response elicited by natural infection or vaccination are still uncertain. We use simple epidemiological models to explore estimates for the magnitude and timing of future Covid-19 cases given…

Journal Article

In recent decades, Antarctic ice sheet/shelf melting has been accelerated, releasing freshwater into the Southern Ocean. It has been suggested that the meltwater flux could lead to cooling in the Southern Hemisphere, which would retard global warming and further induce a northward shift of the Intertropical Convergence Zone (ITCZ). In this…

Journal Article

Nonpharmaceutical interventions (NPIs) have been employed to reduce the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), yet these measures are already having similar effects on other directly transmitted, endemic diseases. Disruptions to the seasonal transmission patterns of these diseases may have consequences for…

Journal Article

Positive precipitation biases over western North America have remained a pervasive problem in the current generation of coupled global climate models. These biases are substantially reduced, however, in a version of the Geophysical Fluid Dynamics Laboratory Forecast-oriented Low Ocean Resolution (FLOR) coupled climate model with systematic sea…

Journal Article

The semi-arid African Sahel region is highly sensitive to changes in monsoon precipitation, as much of the region’s workforce is employed in the agricultural industry (Hamro-Drotz and Programme 2011). Thus, studying the response of rainfall and aridity in this region to radiative perturbations is a matter of pressing humanitarian relevance. In…

Journal Article

Intense convection (updrafts exceeding 10 m s−1) plays an essential role in severe weather and Earth's energy balance. Despite its importance, how the global pattern of intense convection changes in response to warmed climates remains unclear, as simulations from traditional climate models are too coarse to simulate intense convection…

Journal Article

Extratropical weather perturbations have been linked to Atlantic tropical cyclones (TC) activity in observations. However, modeling studies of the extratropical impact are scarce and disagree about its importance and climate implications. Using a non‐hydrostatic regional atmospheric model, we explore the extratropical impact by artificially…

Journal Article

Human activities such as fossil fuel combustion, land-use change, nitrogen (N) fertilizer use, emission of livestock, and waste excretion accelerate the transformation of reactive N and its impact on the marine environment. This study elucidates that anthropogenic N fluxes (ANFs) from the atmospheric deposition and river exacerbates Arctic…

Journal Article

Surface layer (SL) variables (e.g., 2‐m temperature [T2] and 10‐m wind [U10]) are diagnosed by applying the flux‐profile relationships based on Monin‐Obukhov similarity theory to the lowest model height (LMH). This assumes that the LMH is in the SL, which is approximately the bottom 10% of the boundary layer, but atmospheric general circulation…

Journal Article

We describe the third version of the Geophysical Fluid Dynamics Laboratory cloud microphysics scheme (GFDL MP v3) implemented in the System for High-resolution prediction on Earth-to-Local Domains (SHiELD). Compared to the GFDL MP v2, the GFDL MP v3 is entirely reorganized, optimized, and modularized into functions. The particle size…

Journal Article

July 2019 saw record-breaking wildfires burning 3,600 km2 in Alaska. The GFDL Earth system mod-el indicates a threefold increased risk of Alaska’s extreme fires during recent decades due to primarily anthropogenic ignition and secondarily climate-in-duced biofuel abundance.

Journal Article

Three consecutive dry winters (2015–2017) in southwestern SouthAfrica (SSA) resulted in the Cape Town “Day Zero” drought inearly 2018. The contribution of anthropogenic global warmingto this prolonged rainfall deficit has previously been evaluatedthrough observations and climate models. However, model ade-quacy and insufficient horizontal…

Journal Article

We present direct numerical simulations of breaking solitary waves in shallow water to quantify the energy dissipation during the active breaking time. We find that this dissipation can be predicted by an inertial model based on Taylor’s hypothesis as a function of the local wave height, depth and the beach slope. We obtain a relationship that…

Journal Article

We propose an integrated dynamics-physics coupling framework for weather and climate-scale models. Each physical parameterization would be advanced on its natural time scale, revise the thermodynamics to include moist effects, and finally integrated into the relevant components of the dynamical core. We show results using a cloud microphysics…

Journal Article

Theory and observations suggest that low frequency variation in marine plankton populations, or red noise, may arise through cumulative integration of white noise atmospheric forcing by the ocean and its amplification within food webs. Here, we revisit evidence for the integration of stochastic atmospheric variations by comparing the power…

Journal Article

Monsoons emerge over a range of land surface conditions and exhibit varying physical characteristics over the seasonal cycle, from onset to withdrawal. Systematically varying the moisture and albedo parameters over land in an idealized modeling framework allows one to analyze the physics underlying the successive stages of monsoon development…

Journal Article

Because the forcings to which Coupled Model Intercomparison Project - Phase 5 (CMIP5) models were subjected were poorly quantified, recent efforts from the Radiative Forcing Model Intercomparison Project (RFMIP) have focused on developing and testing models with exacting benchmarks. Here, we focus on aerosol forcing to understand if for a given…