A Vertically Resolved Analysis of Radiative Feedbacks on Moist Static Energy Variance in Tropical Cyclones

Type

Article
Abstract

A vertically resolved moist static energy (MSE) variance budget framework is used to diagnose processes associated with the development of tropical cyclones (TCs) in a general circulation model (GCM) under realistic boundary conditions. Previous studies have shown that interactions between radiation and MSE promotes TC development. Here we examine the vertical contributions of radiation and its interactions with MSE by performing several mechanism-denial experiments in which synoptic-scale radiative interactions are suppressed either in the boundary layer or in the free troposphere. Partly suppressing radiative interactions result in a reduction in global TC frequency. However, the magnitude of reduction and structure of the feedback depend on the intensity and structure of the TCs in these mechanism-denial experiments, indicating that both the magnitude and the vertical location of radiative interactions can impact global TC frequency. Using instantaneous 6-houly outputs, an explicit computation reveals distinct spatial patterns of the advection term: the vertical component is positive in the mid to upper troposphere that reflects an upward transport of MSE by deep convection, whereas the horizontal component is positive in the boundary layer. These results illustrate the impact of the vertical distribution of radiative interactions and vertically varied contribution of the advection term in the development of TCs.

Publication Status
In Press
Journal
Journal of Climate