Mass transfer at the ocean-atmosphere interface: the role of wave breaking, drops and bubbles

Author
Publication Year
2022

Type

Journal Article
Abstract

Breaking waves modulate the transfer of energy, momentum, and mass between the ocean and atmosphere, controlling processes critical to the climate system, from gas exchange of carbon dioxide and oxygen to the generation of sea spray aerosols that can be transported in the atmosphere and serve as cloud condensation nuclei. The smallest components, i.e., drops and bubbles generated by breaking waves, play an outsize role. This fascinating problem is characterized by a wide range of length scales, from wind forcing the wave field at scales of (1 km–0.1 m) to the dynamics of wave breaking at (10–0.1 m); air bubble entrainment, dynamics, and dissolution in the water column at (1 m–10 μm); and bubbles bursting at (10 mm–1 μm), generating sea spray droplets at (0.5 mm–0.5 μm) that are ejected into atmospheric turbulent boundary layers. I discuss recent progress to bridge these length scales, identifying the controlling processes and proposing a path toward mechanistic parameterizations of air–sea mass exchange that naturally accounts for sea state effects.

Journal
Annual Review of Fluid Mechancis
Volume
54
Pages
191-224
Date Published
January 2022
Full text