@article{206, keywords = {Hurricanes/typhoons; Tropical cyclones; Numerical weather prediction/forecasting}, author = {Andrew Hazelton and Zhan Zhang and Bin Liu and al. et}, title = {2019 Atlantic hurricane forecasts from the global-nested Hurricane Analysis and Forecast System: Composite statistics and key events}, abstract = {
NOAA{\textquoteright}s Hurricane Analysis and Forecast System (HAFS) is an evolving FV3-based hurricane modeling system that is expected to replace the operational hurricane models at the National Weather Service. Supported by the Hurricane Forecast Improvement Program (HFIP), global-nested and regional versions of HAFS were run in real time in 2019 to create the first baseline for the HAFS advancement. In this study, forecasts from the global-nested configuration of HAFS (HAFS-globalnest) are evaluated and compared with other operational and experimental models. The forecasts by HAFS-globalnest covered the period from July through October during the 2019 hurricane season. Tropical cyclone (TC) track, intensity, and structure forecast verifications are examined. HAFS-globalnest showed track skill superior to several operational hurricane models and comparable intensity and structure skill, although the skill in predicting rapid intensification was slightly inferior to the operational model skill. HAFS-globalnest correctly predicted that Hurricane Dorian would slow and turn north in the Bahamas and also correctly predicted structural features in other TCs such as a sting jet in Hurricane Humberto during extratropical transition. Humberto was also a case where HAFS-globalnest had better track forecasts than a regional version of HAFS (HAFS-SAR) due to a better representation of the large-scale flow. These examples and others are examined through comparisons with airborne tail Doppler radar from the NOAA WP-3D to provide a more detailed evaluation of TC structure prediction. The results from this real-time experiment motivate several future model improvements, and highlight the promise of HAFS-globalnest for improved TC prediction.
}, year = {2021}, journal = {Weather and Forecasting}, volume = {36}, pages = {519-538}, month = {April 2021}, doi = {10.1175/WAF-D-20-0044.1}, language = {eng}, }